Data collection

Enraf-Nonius CAD-4 diffractometer
$20 / \omega$ scans
Absorption correction: none
3603 measured reflections
3603 independent reflections
3285 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=24.98^{\circ}$
$h=-38 \rightarrow 38$
$k=0 \rightarrow 6$
$l=0 \rightarrow 26$
3 standard reflections every 100 reflections frequency: 120 min intensity decay: 4%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.121$
$S=1.128$
3285 reflections
259 parameters
H atoms riding
$(\Delta / \sigma)_{\max }=0.053$ 。
$\Delta \rho_{\text {max }}=0.311 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.291 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

$$
\begin{aligned}
& v=F_{o}\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& \text { where } P=(
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{S} 1-\mathrm{Cl} 1$	$1.738(2)$	$\mathrm{O} 2-\mathrm{C} 5$	$1.203(2)$
$\mathrm{S} 1-\mathrm{C} 3$	$1.736(2)$	$\mathrm{O} 3-\mathrm{C} 5$	$1.293(2)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.617(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.482(2)$
$\mathrm{N}-\mathrm{C} 1$	$1.385(2)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.352(2)$
$\mathrm{N}-\mathrm{C} 2$	$1.397(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.513(2)$
$\mathrm{N}-\mathrm{C} 4$	$1.431(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.443(2)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.197(2)$		
$\mathrm{Cl}-\mathrm{S} 1-\mathrm{C} 3$	$92.96(8)$	$\mathrm{N}-\mathrm{C} 2-\mathrm{C} 3$	$109.46(12)$
$\mathrm{Cl}-\mathrm{N}-\mathrm{C} 2$	$116.78(13)$	$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 2$	$119.36(13)$
$\mathrm{Cl}-\mathrm{N}-\mathrm{C} 4$	$123.57(13)$	$\mathrm{C} 6-\mathrm{C} 3-\mathrm{S} 1$	$130.21(13)$
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 4$	$118.61(12)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$110.42(11)$
$\mathrm{N}-\mathrm{Cl}-\mathrm{S} 2$	$126.24(13)$	$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 5$	$110.93(14)$
$\mathrm{N}-\mathrm{Cl}-\mathrm{S} 1$	$110.34(11)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 3$	$125.0(2)$
$\mathrm{S} 2-\mathrm{Cl}-\mathrm{S} 1$	$123.42(10)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$123.35(15)$
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{N}$	$122.4(2)$	$\mathrm{O} 3-\mathrm{C}-\mathrm{C} 4$	$111.69(14)$
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 3$	$128.12(15)$	$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 7$	$131.89(14)$

Most H atoms were geometrically placed, except for H 3 which was unambiguously located by difference Fourier methods, and were constrained with a riding model.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: Xtal_GX (Hall \& du Boulay, 1995) and PLUTON92 (Spek, 1992).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1236). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fresneau, P. (1996). Thèse, Université J. Fourier, Grenoble, France.
Fresneau, P., Cussac, M., Morand, J. M., Szmonski, B., TranQui, D. \& Leclerc, G. (1998). J. Med. Chem. 41. In the press.
Hall, S. R. \& du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Spek, A. L. (1992). PLUTON92. Molecular Graphics Program. University of Utrecht. The Netherlands.
TranQui, D., Fresneau, P. \& Cussac. M. (1998). Acta Crist. C54. Accepted.

Acta Cryst. (1998). C54, 1154-1156

2,2'-Biphenol

Janice J. Byrne, Pierre Y. Chavant, Marie-Thérèse Averbuch-Pouchot and Yannick Vallée

LEDSS, UMR CNRS 5616, Université Joseph Fourier, BP 53, 3804l Grenoble, CEDEX 9, France. E-mail: marie-therese.averbuch@ujf-grenoble.fr
(Received 15 October 1997; accepted 9 Februarr 1998)

Abstract

The structure of anhydrous $2,2^{\prime}$-biphenol, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$, is described, together with the hydrogen-bonding scheme. The first hydrogen bond is an intramolecular one, while the second one connects the biphenol molecules to build infinite chains running in the \mathbf{b} direction. A comparison with the structure of $2,2^{\prime}$-biphenol monohydrate is made.

\section*{Comment}

In relation to the synthesis of Lewis acid derivatives of biphenol (Schaverien et al., 1992), we are interested in the organization of pure phenols in the solid state. Recently, biphenol has been used as an activator of coordination catalysts (Matsukawa \& Mikami, 1996; Mikami \& Matsukawa, 1997), but little is known about the structures of these complexes. The structure of $2,2^{\prime}$-biphenol monohydrate, (II), was recently described (Chen et al., 1996), and a comparison can be made of the structures of the monohydrate, (II), and the anhydrous form, (I).

(I)

All bond lengths and angles found in (I) (Table 1) agree with those in the literature (Allen et al., 1987). The C6-C7 single bond is significantly longer than the $\mathrm{C}-\mathrm{C}$ bonds in the two aromatic rings. The dihedral angles between the aromatic rings, namely $48.4(1)^{\circ}$ in (I) and $67.6(1)^{\circ}$ in (II), are significantly different.

It is also worth noting that the two hydroxyl groups of (I) are cis with respect to one another, while in the monohydrate, this is not true. This cis arrangement allows the formation of an intramolecular hydrogen bond, in which the $\mathrm{O} \cdots \mathrm{O}$ distance is $2.606(1) \AA$ (Table 2). There is also a second hydrogen bond, linking the biphenyl molecules into a supramolecular chain running along the \mathbf{b} direction (Fig. 1). This contrasts with the case of the monohydrate, where the trans arrangement of the O atoms inhibits an intramolecular bond, and hydrogen bonding via the lattice water molecules connects the biphenyl molecules into a twodimensional network.

Fig. 1. An ORTEPII (Johnson, 1976) projection of the crystal structure of (I) along the a direction, shown with 35% probability displacement ellipsoids. The hydrogen bonds are represented by dashed lines.

Experimental

Crystals of the title compound were obtained by slow evaporation of a solution of amorphous $2,2^{\prime}$-biphenol (1 mmol) in dry toluene (10 ml).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$

Monoclinic
$P 2_{1} / c$
$a=7.392$ (2) \AA
$b=8.965(6) \AA$
$c=14.925(4) \AA$
$\beta=102.90(2)^{\circ}$
$V=964.1(6) \AA^{3}$
$Z=4$
$D_{x}=1.283 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction: none 3079 measured reflections 2982 independent reflections 1695 reflections with $I>1.8 \sigma(I)$

Cell parameters from 24 reflections
$\theta=9.9-11.5^{\circ}$
$\mu=0.087 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Stout monoclinic prism $0.50 \times 0.48 \times 0.42 \mathrm{~mm}$ Translucent pale yellow

Refinement

Refinement on F
$R=0.042$
$w R=0.053$
$S=1.768$
1695 reflections
168 parameters All H atoms refined $w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.$
$\left.+0.00042\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.050$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=29.96^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 12$
$l=0 \rightarrow 20$
2 standard reflections frequency: 120 min intensity decay: none

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{Cl}$	$1.374(1)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.486(2)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.381(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.396(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(2)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.390(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.389(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.375(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.372(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.367(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.370(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.376(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.377(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.378(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.395(2)$		
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	$121.3(1)$	$\mathrm{C}-\mathrm{C} 7-\mathrm{C} 8$	$119.1(1)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$117.07(9)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12$	$124.2(1)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	$121.6(1)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$116.7(1)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.6(1)$	$\mathrm{C} 7-\mathrm{C}-\mathrm{C} 9$	$121.8(1)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.3(1)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.9(1)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.8(1)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.9(1)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.6(1)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$120.0(1)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$116.9(1)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 7$	$121.2(1)$
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7$	$123.23(9)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$	$117.2(1)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.8(1)$	$\mathrm{C} 7-\mathrm{Cl}-\mathrm{Cl1}$	$121.5(1)$

Table 2. Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1^{\prime} \cdots 2^{\prime}$	$0.86(2)$	$1.79(2)$	$2.645(1)$	$168(1)$
$\mathrm{O} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 1$	$0.86(2)$	$1.80(2)$	$2.606(1)$	$156(1)$

Symmetry code: (i) $-x, y-\frac{1}{2}, \frac{3}{2}-z$.
The H atoms were found in a final difference Fourier map and were refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SIR88 (Burla et al., 1989). Program(s) used to
refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1005). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G.. Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Crust. 22, 389-303.

Chen, X.-M., Luo, G.-B., Tong, M.-L. \& Zhou, Z.-Y. (1996). Acta Cryst. C52, 1727-1729.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Matsukawa, S. \& Mikami, K. (1996). Enantiomer, 1, 69-73.
Mikami, K. \& Matsukawa, S. (1997). Nature (London), 385, 613-615.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Schaverien, C. J., Meijboom, N. \& Orpen, A. G. (1992). J. Chem. Soc. Chem. Commun. pp. 124-126.
Zachariasen, W. H. (1967). Acta Cryst. A23, 558-564.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1998). C54, 1156-1158

(20S)-3 β-Hydroxyholosta-7,9-diene

Sergey G. Ilyin, ${ }^{a}$ Alexander S. Antonov, ${ }^{a}$
Valentine A. Stonk, ${ }^{a}$ Michael Yu. Antipin ${ }^{b}$ and Georgy B. Elyakov ${ }^{a}$

${ }^{a}$ Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 159 Prosp. 100-Letiva Vladivostoka, 690022 Vladivostok-22, Russian Federation, and ${ }^{b} A$. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. E-mail: ilyin@piboc. marine.su
(Received 2 April 1997; accepted 30 January 1998)

Abstract

The crystal and molecular structures of the title triterpenoid have been determined. There are three molecules of this triterpenoid $\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3}\right)$, one molecule of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ and a molecule of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in the asymmetric unit, i.e. formula $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3} \cdot \frac{1}{3} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot \frac{1}{3} \mathrm{H}_{2} \mathrm{O}$. The molecules of the triterpenoid have different conformations of both the side chains and the γ-lactone rings.

